Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.448
Filtrar
1.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38578954

RESUMO

In the classical insulin target tissues of liver, muscle, and adipose tissue, chronically elevated levels of free fatty acids (FFA) impair insulin signaling. Insulin signaling molecules are also present in ß-cells where they play a role in ß-cell function. Therefore, inhibition of the insulin/insulin-like growth factor 1 pathway may be involved in fat-induced ß-cell dysfunction. To address the role of ß-cell insulin resistance in FFA-induced ß-cell dysfunction we co-infused bisperoxovanadate (BPV) with oleate or olive oil for 48 hours in rats. BPV, a tyrosine phosphatase inhibitor, acts as an insulin mimetic and is devoid of any antioxidant effect that could prevent ß-cell dysfunction, unlike most insulin sensitizers. Following fat infusion, rats either underwent hyperglycemic clamps for assessment of ß-cell function in vivo or islets were isolated for ex vivo assessment of glucose-stimulated insulin secretion (GSIS). We also incubated islets with oleate or palmitate and BPV for in vitro assessment of GSIS and Akt (protein kinase B) phosphorylation. Next, mice with ß-cell specific deletion of PTEN (phosphatase and tensin homolog; negative regulator of insulin signaling) and littermate controls were infused with oleate for 48 hours, followed by hyperglycemic clamps or ex vivo evaluation of GSIS. In rat experiments, BPV protected against fat-induced impairment of ß-cell function in vivo, ex vivo, and in vitro. In mice, ß-cell specific deletion of PTEN protected against oleate-induced ß-cell dysfunction in vivo and ex vivo. These data support the hypothesis that ß-cell insulin resistance plays a causal role in FFA-induced ß-cell dysfunction.


Assuntos
Resistência à Insulina , Células Secretoras de Insulina , PTEN Fosfo-Hidrolase , Animais , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ratos , Camundongos , Masculino , PTEN Fosfo-Hidrolase/metabolismo , Ácido Oleico/farmacologia , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Secreção de Insulina/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Ratos Sprague-Dawley
2.
BMC Plant Biol ; 24(1): 262, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594614

RESUMO

BACKGROUND: Foliar diseases namely late leaf spot (LLS) and leaf rust (LR) reduce yield and deteriorate fodder quality in groundnut. Also the high oleic acid content has emerged as one of the most important traits for industries and consumers due to its increased shelf life and health benefits. RESULTS: Genetic mapping combined with pooled sequencing approaches identified candidate resistance genes (LLSR1 and LLSR2 for LLS and LR1 for LR) for both foliar fungal diseases. The LLS-A02 locus housed LLSR1 gene for LLS resistance, while, LLS-A03 housed LLSR2 and LR1 genes for LLS and LR resistance, respectively. A total of 49 KASPs markers were developed from the genomic regions of important disease resistance genes, such as NBS-LRR, purple acid phosphatase, pentatricopeptide repeat-containing protein, and serine/threonine-protein phosphatase. Among the 49 KASP markers, 41 KASPs were validated successfully on a validation panel of contrasting germplasm and breeding lines. Of the 41 validated KASPs, 39 KASPs were designed for rust and LLS resistance, while two KASPs were developed using fatty acid desaturase (FAD) genes to control high oleic acid levels. These validated KASP markers have been extensively used by various groundnut breeding programs across the world which led to development of thousands of advanced breeding lines and few of them also released for commercial cultivation. CONCLUSION: In this study, high-throughput and cost-effective KASP assays were developed, validated and successfully deployed to improve the resistance against foliar fungal diseases and oleic acid in groundnut. So far deployment of allele-specific and KASP diagnostic markers facilitated development and release of two rust- and LLS-resistant varieties and five high-oleic acid groundnut varieties in India. These validated markers provide opportunities for routine deployment in groundnut breeding programs.


Assuntos
Basidiomycota , Micoses , Resistência à Doença/genética , Ácido Oleico , Melhoramento Vegetal , Mapeamento Cromossômico , Basidiomycota/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
BMC Microbiol ; 24(1): 128, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641593

RESUMO

BACKGROUND: Biofilm formation is viewed as a vital mechanism in C. glabrata pathogenesis. Although, it plays a significant role in virulence but transcriptomic architecture and metabolic pathways governing the biofilm growth mode of C. glabrata remain elusive. The present study intended to investigate the genes implicated in biofilm growth phase of C. glabrata through global transcriptomic approach. RESULTS: Functional analysis of Differentially expressed genes (DEGs) using gene ontology and pathways analysis revealed that upregulated genes are involved in the glyoxylate cycle, carbon-carbon lyase activity, pre-autophagosomal structure membrane and vacuolar parts whereas, down- regulated genes appear to be associated with glycolysis, ribonucleoside biosynthetic process, ribosomal and translation process in the biofilm growth condition. The RNA-Seq expression of eight selected DEGs (CgICL1, CgMLS1, CgPEP1, and CgNTH1, CgERG9, CgERG11, CgTEF3, and CgCOF1) was performed with quantitative real-time PCR (RT-qPCR). The gene expression profile of selected DEGs with RT-qPCR displayed a similar pattern of expression as observed in RNA-Seq. Phenotype screening of mutant strains generated for genes CgPCK1 and CgPEP1, showed that Cgpck1∆ failed to grow on alternative carbon substrate (Glycerol, Ethanol, Oleic acid) and similarly, Cgpep1∆ unable to grow on YPD medium supplemented with hydrogen peroxide. Our results suggest that in the absence of glucose, C. glabrata assimilate glycerol, oleic acid and generate acetyl coenzyme-A (acetyl-CoA) which is a central and connecting metabolite between catabolic and anabolic pathways (glyoxylate and gluconeogenesis) to produce glucose and fulfil energy requirements. CONCLUSIONS: The study was executed using various approaches (transcriptomics, functional genomics and gene deletion) and it revealed that metabolic plasticity of C. glabrata (NCCPF-100,037) in biofilm stage modulates its virulence and survival ability to counter the stress and may promote its transition from commensal to opportunistic pathogen. The observations deduced from the present study along with future work on characterization of the proteins involved in this intricate process may prove to be beneficial for designing novel antifungal strategies.


Assuntos
Candida glabrata , Ácido Oleico , Candida glabrata/genética , Candida glabrata/metabolismo , Ácido Oleico/metabolismo , Carbono/metabolismo , Glicerol , Antifúngicos/metabolismo , Estresse Oxidativo , Biofilmes , Glucose/metabolismo , Glioxilatos/metabolismo
4.
Exp Lung Res ; 50(1): 96-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625585

RESUMO

Background: Acute Respiratory Distress syndrome (ARDS) is a clinical syndrome of noncardiac pulmonary edema and inflammation leading to acute respiratory failure. We used the oleic acid infusion pig model of ARDS resembling human disease to explore cytokine changes in white blood cells (WBC) and plasma proteins, comparing baseline to ARDS values. Methods: Nineteen juvenile female swine were included in the study. ARDS defined by a PaO2/FiO2 ratio < 300 was induced by continuous oleic acid infusion. Arterial blood was drawn before and during oleic acid infusion, and when ARDS was established. Cytokine expression in WBC was analyzed by RT-qPCR and plasma protein expression by ELISA. Results: The median concentration of IFN-γ mRNA was estimated to be 59% (p = 0.006) and of IL-6 to be 44.4% (p = 0.003) of the baseline amount. No significant changes were detected for TNF-α, IL-17, and IL-10 mRNA expression. In contrast, the concentrations of plasma IFN-γ and IL-6 were significantly higher (p = 0.004 and p = 0.048 resp.), and TNF-α was significantly lower (p = 0.006) at ARDS compared to baseline. Conclusions: The change of proinflammatory cytokines IFN-γ and IL-6 expression is different comparing mRNA and plasma proteins at oleic acid-induced ARDS compared to baseline. The migration of cells to the lung may be the cause for this discrepancy.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Humanos , Feminino , Animais , Suínos , Ácido Oleico , Fator de Necrose Tumoral alfa , Interleucina-6 , Citocinas , Lesão Pulmonar Aguda/induzido quimicamente , Síndrome do Desconforto Respiratório/induzido quimicamente
5.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612766

RESUMO

Breast cancer, particularly triple-negative breast cancer (TNBC), poses a global health challenge. Emerging evidence has established a positive association between elevated levels of stearoyl-CoA desaturase 1 (SCD1) and its product oleate (OA) with cancer development and metastasis. SCD1/OA leads to alterations in migration speed, direction, and cell morphology in TNBC cells, yet the underlying molecular mechanisms remain elusive. To address this gap, we aim to investigate the impact of OA on remodeling the actin structure in TNBC cell lines, and the underlying signaling. Using TNBC cell lines and bioinformatics tools, we show that OA stimulation induces rapid cell membrane ruffling and enhances filopodia formation. OA treatment triggers the subcellular translocation of Arp2/3 complex and Cdc42. Inhibiting Cdc42, not the Arp2/3 complex, effectively abolishes OA-induced filopodia formation and cell migration. Additionally, our findings suggest that phospholipase D is involved in Cdc42-dependent filopodia formation and cell migration. Lastly, the elevated expression of Cdc42 in breast tumor tissues is associated with a lower survival rate in TNBC patients. Our study outlines a new signaling pathway in the OA-induced migration of TNBC cells, via the promotion of Cdc42-dependent filopodia formation, providing a novel insight for therapeutic strategies in TNBC treatment.


Assuntos
Ácido Oleico , Neoplasias de Mama Triplo Negativas , Humanos , Pseudópodes , Movimento Celular , Actinas , Complexo 2-3 de Proteínas Relacionadas à Actina
6.
Front Cell Infect Microbiol ; 14: 1352810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601738

RESUMO

Commensal gut bacteria use oleate hydratase to release a spectrum of hydroxylated fatty acids using host-derived unsaturated fatty acids. These compounds are thought to attenuate the immune response, but the underlying signaling mechanism(s) remain to be established. The pathogen Staphylococcus aureus also expresses an oleate hydratase and 10-hydroxyoctadecanoic acid (h18:0) is the most abundant oleate hydratase metabolite found at Staphylococcal skin infection sites. Here, we show h18:0 stimulates the transcription of a set of lipid metabolism genes associated with the activation of peroxisome proliferator activated receptor (PPAR) in the RAW 264.7 macrophage cell line and mouse primary bone marrow-derived macrophages. Cell-based transcriptional reporter assays show h18:0 selectively activates PPARα. Radiolabeling experiments with bone marrow-derived macrophages show [1-14C]h18:0 is not incorporated into cellular lipids, but is degraded by ß-oxidation, and mass spectrometry detected shortened fragments of h18:0 released into the media. The catabolism of h18:0 was >10-fold lower in bone marrow-derived macrophages isolated from Ppara -/- knockout mice, and we recover 74-fold fewer S. aureus cells from the skin infection site of Ppara -/- knockout mice compared to wildtype mice. These data identify PPARα as a target for oleate hydratase-derived hydroxy fatty acids and support the existence of an oleate hydratase-PPARα signaling axis that functions to suppress the innate immune response to S. aureus.


Assuntos
PPAR alfa , Staphylococcus aureus , Camundongos , Animais , PPAR alfa/metabolismo , Staphylococcus aureus/metabolismo , Ácido Oleico , Ácidos Graxos/metabolismo , Camundongos Knockout
7.
PLoS One ; 19(4): e0297572, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630788

RESUMO

BACKGROUND: Currently, it is acknowledged that vitamin E, insulin sensitizers and anti-diabetic drugs are used to manage non-alcoholic fatty liver disease (NAFLD), however, these therapeutic interventions harbour adverse side effects. Pioglitazone, an anti-diabetic drug, is currently the most effective therapy to manage NAFLD. The use of natural medicines is widely embraced due to the lack of evidence of their negative side effects. Rooibos has been previously shown to decrease inflammation and oxidative stress in experimental models of diabetes, however, this is yet to be explored in a setting of NAFLD. This study was aimed at investigating the effects of an aspalathin-rich green rooibos extract (Afriplex GRTTM) against markers of hepatic oxidative stress, inflammation and apoptosis in an in vitro model of NAFLD. METHODS: Oleic acid [1 mM] was used to induce hepatic steatosis in C3A liver cells. Thereafter, the therapeutic effect of Afriplex GRTTM, with or without pioglitazone, was determined by assessing its impact on cell viability, changes in mitochondrial membrane potential, intracellular lipid accumulation and the expression of genes and proteins (ChREBP, SREBF1, FASN, IRS1, SOD2, Caspase-3, GSTZ1, IRS1 and TNF-α) that are associated with the development of NAFLD. RESULTS: Key findings showed that Afriplex GRTTM added to the medium alone or combined with pioglitazone, could effectively block hepatic lipid accumulation without inducing cytotoxicity in C3A liver cells exposed oleic acid. This positive outcome was consistent with effective regulation of genes involved in insulin signaling, as well as carbohydrate and lipid metabolism (IRS1, SREBF1 and ChREBP). Interestingly, in addition to reducing protein levels of an inflammatory marker (TNF-α), the Afriplex GRTTM could ameliorate oleic acid-induced hepatic steatotic damage by decreasing the protein expression of oxidative stress and apoptosis related markers such as GSTZ1 and caspase-3. CONCLUSION: Afriplex GRTTM reduced hepatic steatosis in oleic acid induced C3A liver cells by modulating SREBF1, ChREBP and IRS-1 gene expression. The extract may also play a role in alleviating inflammation by reducing TNF-α expression, suggesting that additional experiments are required for its development as a suitable therapeutic option against NAFLD. Importantly, further research is needed to explore its antioxidant role in this model.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Caspase 3/metabolismo , Ácido Oleico/farmacologia , Pioglitazona/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Inflamação/metabolismo , Insulina/metabolismo , Dieta Hiperlipídica , Glutationa Transferase/metabolismo
8.
J Phys Chem B ; 128(10): 2398-2411, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38445598

RESUMO

The activation of the muscular nicotinic acetylcholine receptor (nAChR) produces the opening of the channel, with the consequent increase in the permeability of cations, triggering an excitatory signal. Free fatty acids (FFA) are known to modulate the activity of the receptor as noncompetitive antagonists, acting at the membrane-AChR interface. We present molecular dynamics simulations of a model of nAChR in a desensitized closed state embedded in a lipid bilayer in which distinct membrane phospholipids were replaced by two different monounsaturated FFA that differ in the position of a double bond. This allowed us to detect and describe that the cis-18:1ω-9 FFA were located at the interface between the transmembrane segments of α2 and γ subunits diffused into the channel lumen with the consequent potential ability to block the channel to the passage of ions.


Assuntos
Receptores Nicotínicos , Animais , Receptores Nicotínicos/química , Simulação de Dinâmica Molecular , Ácido Oleico , Sítios de Ligação , Membrana Celular/metabolismo , Torpedo/metabolismo
9.
Molecules ; 29(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474494

RESUMO

This study investigates the development of an oil-in-water (O/W) emulsion enriched with a high concentration of ostrich oil, recognized for its abundant content of oleic acid (34.60 ± 0.01%), tailored for skincare applications. Using Span and Tween emulsifiers, we formulated an optimized emulsion with 20% w/w ostrich oil and a 15% w/w blend of Span 20 and Tween 80. This formulation, achieved via homogenization at 3800 rpm for 5 min, yielded the smallest droplet size (5.01 ± 0.43 µm) alongside an appropriate zeta potential (-32.22 mV). Our investigation into the influence of Span and Tween concentrations, types, and ratios on the stability of 20% w/w ostrich oil emulsions, maintaining a hydrophile-lipophile balance (HLB) of 5.5, consistently demonstrated the superior stability of the optimized emulsion across various formulations. Cytotoxicity assessments on human dermal fibroblasts affirmed the safety of the emulsion. Notably, the emulsion exhibited a 52.20 ± 2.01% inhibition of linoleic acid oxidation, surpassing the 44.70 ± 1.94% inhibition observed for ostrich oil alone. Moreover, it demonstrated a superior inhibitory zone against Staphylococcus aureus (12.32 ± 0.19 mm), compared to the 6.12 ± 0.15 mm observed for ostrich oil alone, highlighting its enhanced antioxidant and antibacterial properties and strengthening its potential for skincare applications. The optimized emulsion also demonstrates the release of 78.16 ± 1.22% of oleic acid across the cellulose acetate membrane after 180 min of study time. This successful release of oleic acid further enhances the overall efficacy and versatility of the optimized emulsion. Stability assessments, conducted over 6 months at different temperatures (4 °C, 25 °C, 45 °C), confirmed the emulsion's sustained physicochemical and microbial stability, supporting its promise for topical applications. Despite minor fluctuations in acid values (AV) and peroxide values (PV), the results remained within the acceptable limits. This research elucidates the crucial role of emulsification in optimizing the efficacy and stability of ostrich oil in skincare formulations, providing valuable insights for practical applications where stability is paramount.


Assuntos
Polissorbatos , Struthioniformes , Animais , Humanos , Emulsões/química , Polissorbatos/química , Ácido Oleico , Água/química
10.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474614

RESUMO

The Selçuk district of Izmir is one of the most essential regions in terms of olive oil production. In this study, 60 olive oil samples were obtained from five different locations (ES: Eski Sirince Yolu, KK: Kinali Köprü, AU: Abu Hayat Üst, AA: Abu Hayat Alt, and DB: Degirmen Bogazi) in the Selçuk region of Izmir during two (2019-2020 and 2020-2021) consecutive cropping seasons. Quality indices (free acidity, peroxide value, p-Anisidine value, TOTOX, and spectral absorption at 232 and 270 nm) and the fatty acid, phenolic, and sterol profiles of the samples were determined to analyze the changes in the composition of Selcuk olive oils according to their growing areas. When the quality criteria were analyzed, it was observed that KK had the lowest FFA (0.11% oleic acid, PV (6.66 meq O2/kg), p-ANV (11.95 mmol/kg), TOTOX (25.28), and K232 (1.99) values and K270 had the highest value. During the assessment of phenolic profiles, the ES group exhibited the highest concentration of the phenolic compound p-HPEA-EDA (oleocanthal), with a content of 93.58 mg/kg, equivalent to tyrosol. Upon analyzing the fatty acid and sterol composition, it was noted that AU displayed the highest concentration of oleic acid (71.98%) and ß-sitosterol (87.65%). PCA analysis illustrated the distinct separation of the samples, revealing significant variations in both sterol and fatty acid methyl ester distributions among oils from different regions. Consequently, it was determined that VOOs originating from the Selçuk region exhibit distinct characteristics based on their geographical locations. Hence, this study holds great promise for the region to realize geographically labeled VOOs.


Assuntos
Olea , Ácido Oleico , Azeite de Oliva/análise , Ácidos Graxos , Peróxidos , Esteróis , Óleos de Plantas
11.
Food Chem ; 447: 139046, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518620

RESUMO

The objective of this study was to systematically elucidate the effects of conventional (Cold Pressing, CP; Hot Pressing, HP; Soxhlet Extraction; SE) and novel methods (Microwave-Assisted Extraction, MAE) on the physicochemical properties, bio-active substances, flavor and lipidomics of Camellia oleifera oil (COO). The cold-pressed COO contained the highest contents of squalene (176.38 mg/kg), α-tocopherol (330.52 mg/kg), polyphenols (68.33 mg/kg) and phytosterols (2782.55 mg/kg). Oleic acid was observed as the predominant fatty acid with the content of approximately 80%. HS-GC-IMS identified 47 volatile compounds, including 11 aldehydes, 11 ketones, 11 alcohols, 2 acids, 8 esters, 2 pyrazines, 1 furan, and 1 thiophene. A total of 5 lipid classes and 30 lipid subclasses of 339 lipids were identifed, among which TGs and DGs were observed as the major lipids. In summary, both cold-pressed and microwave-assisted technologies provided high-quality COO with high content of bio-active substances and diglycerides/triglycerides.


Assuntos
Camellia , Lipidômica , Óleos de Plantas/química , Ácidos Graxos , Ácido Oleico , Camellia/química
12.
Int J Pharm ; 654: 123992, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479485

RESUMO

Linagliptin is a dipeptidyl peptidase-4 inhibitor used for the management of type-2 diabetes. US FDA-approved products are available exclusively as oral tablets. The inherent drawbacks of the oral administration route necessitate exploring delivery strategies via other routes. In this study, we investigated the feasibility of transdermal administration of linagliptin through various approaches. We compared chemical penetration enhancers (oleic acid, oleyl alcohol, and isopropyl myristate) and physical enhancement techniques (iontophoresis, sonophoresis, microneedles, laser, and microdermabrasion) to understand their potential to improve transdermal delivery of linagliptin. To our knowledge, this is the first reported comparison of chemical and physical enhancement techniques for the transdermal delivery of a moderately lipophilic molecule. All physical enhancement techniques caused a significant reduction in the transepithelial electrical resistance of the skin samples. Disruption of the skin's structure post-treatment with physical enhancement techniques was further confirmed using characterization techniques such as dye binding, histology, and confocal microscopy. In vitro permeation testing (IVPT) demonstrated that the passive delivery of linagliptin across the skin was < 5 µg/sq.cm. Two penetration enhancers - oleic acid (93.39 ± 8.34 µg/sq.cm.) and oleyl alcohol (424.73 ± 42.86 µg/sq.cm.), and three physical techniques - iontophoresis (53.05 ± 0.79 µg/sq.cm.), sonophoresis (141.13 ± 34.22 µg/sq.cm.), and laser (555.11 ± 78.97 µg/sq.cm.) exceeded the desired target delivery for therapeutic effect. This study established that linagliptin is an excellent candidate for transdermal delivery and thoroughly compared chemical penetration and physical transdermal delivery strategies.


Assuntos
Álcoois Graxos , Linagliptina , Absorção Cutânea , Administração Cutânea , Linagliptina/metabolismo , Ácido Oleico/metabolismo , Pele/metabolismo , Iontoforese/métodos , Sistemas de Liberação de Medicamentos/métodos
13.
Nutrition ; 122: 112394, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458062

RESUMO

BACKGROUND: Breast cancer survivors are a growing population due to improved treatment. It is known that postmenopausal women treated for breast cancer may experience weight gain and increased insulin resistance, but detailed knowledge on how chemotherapy impact metabolic and endocrine mechanisms remain unknown. OBJECTIVES: We performed a thorough, preliminary study to elucidate the differing mechanisms of postprandial absorption and metabolism in postmenopausal early breast cancer (EBC) patients treated with adjuvant chemotherapy compared to healthy controls. We hypothesize that chemotherapy has a negative impact on metabolism in EBC patients. METHODS: We examined four postmenopausal women shortly after treatment with chemotherapy for EBC and four age-matched healthy women who served as controls using isotopic tracers during a mixed meal-test. Blood was sampled during the 240 min meal-test to examine postprandial absorption and endogenous synthesis of lipid and carbohydrate metabolites. RESULTS: We found that insulin concentrations were numerically higher before the meal-test in the EBC patients compared to controls (76.3 pmol/L vs 37.0 pmol/L; P = 0.06). Glucose kinetics was increased postprandial (most pronounced at 30 min, 9.46 mmol/L vs 7.33 mmol/L; P = 0.51), with no difference between the groups regarding liver glucose output. Fatty acid kinetics showed a numeric increase in oleic acid rate of appearance in BC patients, but only during the first hour after the mixed meal. There was no significant difference in VLDL-TAG synthesis between the two groups. CONCLUSIONS: This preliminary study is unique in using advanced tracer methods to investigate in vivo metabolism of EBC patients after chemotherapy although no statistical differences in glucose and fatty acid kinetics was seen compared to controls. However, during the first two postprandial hours, oral glucose and oleic acid appearance in the systematic circulation was elevated in the EBC patients. This could be due to changes in gastrointestinal uptake and further studies with altered set-up could provide valuable insights.


Assuntos
Neoplasias da Mama , Glucose , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Ácido Oleico , Pós-Menopausa , Dados Preliminares , Glicemia/metabolismo , Insulina , Ácidos Graxos , Período Pós-Prandial , Triglicerídeos
14.
Biochem Biophys Res Commun ; 708: 149815, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38531220

RESUMO

Sesamin, a special compound present in sesame and sesame oil, has been reported a role in regulating lipid metabolism, while the underlying mechanisms remain unclear. Autophagy has been reported associated with lipid metabolism and regarded as a key modulator in liver steatosis. The present work aimed to investigate whether sesamin could exert its protective effects against lipid accumulation via modulating autophagy in HepG2 cells stimulated with oleic acid (OA). Cell viability was evaluated using the CCK-8 method, and triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein, cholesterol (LDL-C), alanine aminotransferase (ALT), along with aspartate aminotransferase (AST) were assessed by oil red O staining, transmission electron microscopy (TEM), and biochemical kits to investigate the lipid-lowering effects of sesamin. Differentially expressed genes were screened by RNA sequencing and validated using real-time quantitative PCR and Western blot. Autophagy and mitophagy related molecules were analyzed employing TEM, Western blot, and immunofluorescence. The data shows that in HepG2 cells stimulated by OA, sesamin reduces levels of TG, TC, LDL-C, ALT, and AST while elevating HDL-C, alleviates the lipid accumulation and improves fatty acid metabolism through modulating the levels of fat metabolism related genes including PCSK9, FABP1, CD36, and SOX4. Sesamin restores the suppressed autophagy in HepG2 cells caused by OA, which could be blocked by autophagy inhibitors. This indicates that sesamin improves fatty acid metabolism by enhancing autophagy levels, thereby mitigating the intracellular lipid accumulation. Furthermore, sesamin significantly enhances the mitophagy and improves mitochondrial homeostasis via activating the PINK/Parkin pathway. These data suggest that sesamin alleviates the excessive lipid accumulation in HepG2 caused by OA by restoring the impaired mitophagy via the PINK1/Parkin pathway, probably playing a preventive or therapeutic role in hepatic steatosis.


Assuntos
Dioxóis , Fígado Gorduroso , Lignanas , Pró-Proteína Convertase 9 , Fatores de Transcrição SOXC , Humanos , Células Hep G2 , Pró-Proteína Convertase 9/metabolismo , Mitofagia , Ácido Oleico/metabolismo , LDL-Colesterol/metabolismo , LDL-Colesterol/farmacologia , Fígado Gorduroso/metabolismo , Metabolismo dos Lipídeos , Colesterol/metabolismo , Triglicerídeos/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fígado/metabolismo
15.
Cancer Med ; 13(7): e7091, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553868

RESUMO

BACKGROUND: The molecular content of urine is defined by filtration in the kidneys and by local release from tissues lining the urinary tract. Pathological processes and different therapies change the molecular composition of urine and a variety of markers have been analyzed in patients with bladder cancer. The response to BCG immunotherapy and chemotherapy has been extensively studied and elevated urine concentrations of IL-1RA, IFN-α, IFN-γ TNF-α, and IL-17 have been associated with improved outcome. METHODS: In this study, the host response to intravesical alpha 1-oleate treatment was characterized in patients with non-muscle invasive bladder cancer by proteomic and transcriptomic analysis. RESULTS: Proteomic profiling detected a significant increase in multiple cytokines in the treatment group compared to placebo. The innate immune response was strongly activated, including IL-1RA and pro-inflammatory cytokines in the IL-1 family (IL-1α, IL-1ß, IL-33), chemokines (MIP-1α, IL-8), and interferons (IFN-α2, IFN-γ). Adaptive immune mediators included IL-12, Granzyme B, CD40, PD-L1, and IL-17D, suggesting broad effects of alpha 1-oleate treatment on the tumor tissues. CONCLUSIONS: The cytokine response profile in alpha 1-oleate treated patients was similar to that reported in BCG treated patients, suggesting a significant overlap. A reduction in protein levels at the end of treatment coincided with inhibition of cancer-related gene expression in tissue biopsies, consistent with a positive treatment effect. Thus, in addition to killing tumor cells and inducing cell detachment, alpha 1-oleate is shown to activate a broad immune response with a protective potential.


Assuntos
Vacina BCG , Neoplasias da Bexiga Urinária , Humanos , Vacina BCG/uso terapêutico , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Ácido Oleico , Proteômica , Citocinas , Neoplasias da Bexiga Urinária/patologia , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Imunidade
16.
J Diabetes Complications ; 38(4): 108722, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503000

RESUMO

BACKGROUNDS: Non-alcoholic fatty liver disease (NAFLD) is a common condition affecting >25 % of the population worldwide. This disorder ranges in severity from simple steatosis (fat accumulation) to severe steatohepatitis (inflammation), fibrosis and, at its end-stage, liver cancer. A number of studies have identified overexpression of several key genes that are critical in the initiation and progression of NAFLD. MiRNAs are potential therapeutic agents that can regulate several genes simultaneously. Therefore, we transfected cell lines with two key miRNAs involved in targeting NAFLD-related genes. METHODS: The suppression effects of the investigated miRNAs (miR-124 and miR-16) and genes (TNF, TLR4, SCD, FASN, SREBF2, and TGFß-1) from our previous study were investigated by real-time PCR in Huh7 and HepG2 cells treated with oleic acid. Oil red O staining and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay were utilized to assess cell lipid accumulation and cytotoxic effects of the miRNAs, respectively. The pro-oxidant-antioxidant balance (PAB) assay was undertaken for miR-16 and miR-124 after cell transfection. RESULTS: Following transfection of miRNAs into HepG2, oil red O staining showed miR-124 and miR-16 reduced oleic acid-induced lipid accumulation by 35.2 % and 28.6 % respectively (p < 0.05). In Huh7, miR-124 and miR-16 reduced accumulation by 23.5 % and 31.3 % respectively (p < 0.05) but without impacting anti-oxidant activity. Real-time PCR in HepG2 revealed miR-124 decreased expression of TNF by 0.13-fold, TLR4 by 0.12-fold and SREBF2 by 0.127-fold (p < 0.05). miR-16 decreased TLR4 by 0.66-fold and FASN by 0.3-fold (p < 0.05). In Huh7, miR-124 decreased TNF by 0.12-fold and FASN by 0.09-fold (p < 0.05). miR-16 decreased SCD by 0.28-fold and FASN by 0.64-fold (p < 0.05). MTT assays showed, in HepG2, viability was decreased 24.7 % by miR-124 and decreased 33 % by miR-16 at 72 h (p < 0.05). In Huh7, miR-124 decreased viability 42 % at 48 h and 29.33 % at 72 h (p < 0.05), while miR-16 decreased viability by 32.3 % (p < 0.05). CONCLUSION: These results demonstrate the ability of miR-124 and miR-16 to significantly reduce lipid accumulation and expression of key pathogenic genes associated with NAFLD through direct targeting. Though this requires further in vivo investigation.


Assuntos
Compostos Azo , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/uso terapêutico , Receptor 4 Toll-Like , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fígado/metabolismo
17.
Food Chem ; 448: 139079, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38520989

RESUMO

Esterification of anthocyanins with saturated fatty acids have been widely investigated, while that with unsaturated fatty acids is little understood. In this study, crude extract (purity âˆ¼ 35 %) of cyanidin-3-O-glucoside (C3G) from black bean seed coat was utilized as reaction substrate, and enzymatically acylated with unsaturated fatty acid (oleic acid). Optimization of various reaction parameters finally resulted in the highest acylation rate of 54.3 %. HPLC-MS/MS and NMR analyses elucidated the structure of cyanidin-3-O-glucoside-oleic acid ester (C3G-OA) to be cyanidin-3-O-(6″-octadecene)-glucoside. Introduction of oleic acid into C3G improved the lipophilicity, antioxidant ability, and antibacterial activity. Further, the color and substance stability analyses showed that the susceptibility of C3G and C3G-OA to different thermal, peroxidative, and illuminant treatments were highly pH dependent, which suggested individual application guidelines. Moreover, C3G-OA showed lower toxicity to normal cell (QSG-7701) and better inhibitory effect on the proliferation of HepG2 cells than C3G, which indicated its potential anti-tumor bioactivity.


Assuntos
Antocianinas , Ácido Oleico , Antocianinas/química , Humanos , Ácido Oleico/química , Esterificação , Extratos Vegetais/química , Antioxidantes/química , Antioxidantes/farmacologia , Células Hep G2 , Phaseolus/química , Antibacterianos/química , Antibacterianos/farmacologia , Estrutura Molecular
18.
Discov Med ; 36(182): 538-545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531794

RESUMO

BACKGROUND: Atherosclerosis (AS) is a chronic vascular inflammatory disease resulting from vascular endothelial injury and lipid deposition, closely linked to abnormal lipid metabolism within the body. The critical processes involved in atherosclerosis encompass lipid deposition, oxidation, metabolic disruptions, and inflammatory stimulation within the inner vessel wall. Lipid deposition emerges as a pivotal factor triggering these pathological changes, with vascular smooth muscle cells (VSMCs) playing a significant role in the development of AS. Therefore, the goal was to employ lipids, specifically palmitic acid (PA) and oleic acid (OA) solutions, to stimulate VSMCs and create an in vitro atherosclerosis model. This approach allows for the establishment of a rapid and efficient cell model for simulating atherosclerosis in vitro. METHODS: Primary vascular smooth muscle cells (VSMCs) were isolated and cultured from the thoracic aorta of healthy rats using the tissue-block method. VSMCs were identified through cell climbing slices and immunofluorescence. The growth of VSMCs was observed using light microscopy. The logarithmic growth phase of VSMCs was induced and stimulated by various concentrations of palmitic acid (PA) and oleic acid (OA) ranging from 0 to 650 µmol/L, with a gradient dilution of 50 µmol/L. VSMC activity was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Intracellular lipid deposition was visualized through Oil Red O staining. The levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) within VSMCs were quantified using commercially available kits. RESULTS: The optimal conditions for VSMC proliferation were determined to be an OA concentration of 500 µmol/L, a PA concentration of 300 µmol/L, and a culture duration of 48 hours. In comparison to the control group, the presence of lipid droplets within VSMCs became significantly evident following treatment with OA or PA. Furthermore, the levels of TC, TG, and LDL-C increased, while the HDL-C content decreased after treatment with OA or PA. CONCLUSIONS: A research model for atherosclerosis (AS) and the early stages of cardiovascular events, specifically lipid deposition, was successfully established through the use of OA and PA solutions. This model has the potential to open up new research avenues for gaining a deeper understanding of the pathogenesis and progression of AS.


Assuntos
Aterosclerose , Ácido Palmítico , Ratos , Animais , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , LDL-Colesterol/metabolismo , Aterosclerose/metabolismo , Proliferação de Células , Células Cultivadas
19.
Exp Eye Res ; 241: 109851, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453039

RESUMO

The accumulation of oleic acid (OA) in the meibum from patients with meibomian gland dysfunction (MGD) suggests that it may contribute to meibomian gland (MG) functional disorder, as it is a potent stimulator of acne-related lipogenesis and inflammation in sebaceous gland. Therefore, we investigate whether OA induces lipogenesis and inflammasome activation in organotypic cultured mouse MG and human meibomian gland epithelial cells (HMGECs). Organotypic cultured mouse MG and HMGECs were exposed to OA or combinations with specific AMPK agonists 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). Lipogenic status, ductal keratinization, squamous metaplasia, NLRP3/ASC/Caspase-1 inflammasome activation, proinflammatory cytokine IL-1ß production, and AMPK pathway phosphorylation in MG were subsequently examined by lipid staining, immunofluorescence staining, immunohistochemical staining, ELISA assay, and Western blot analyses. We found that OA significantly induced lipid accumulation, ductal keratinization, and squamous metaplasia in organotypic cultured MG, as evidenced by increased lipids deposition within acini and duct, upregulated expression of lipogenic proteins (SREBP-1 and HMGCR), and elevation of K10/Sprr1b. Additionally, OA induced NLRP3/ASC/Caspase-1 inflammasome activation, cleavage of Caspase-1, and production of downstream proinflammatory cytokine IL-1ß. The findings of lipogenesis and NLRP3-related proinflammatory response in OA-stimulated HMGECs were consistent with those in organotypic cultured MG. OA exposure downregulated phospho-AMPK in two models, while AICAR treatment alleviated lipogenesis by improving AMPK/ACC phosphorylation and SREBP-1/HMGCR expression. Furthermore, AMPK amelioration inhibited activation of the NLRP3/ASC/Caspase-1 axis and secretion of IL-1ß, thereby relieving the OA-induced proinflammatory response. These results demonstrated that OA induced lipogenic disorder and NLRP3 inflammasome activation in organotypic cultured mouse MG and HMGECs by suppressing the AMPK signaling pathway, indicating OA may play an etiological role in MGD.


Assuntos
Carcinoma de Células Escamosas , Inflamassomos , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Glândulas Tarsais/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Lipogênese , Células Epiteliais/metabolismo , Caspase 1/metabolismo , Citocinas/metabolismo , Metaplasia/metabolismo , Carcinoma de Células Escamosas/metabolismo , Interleucina-1beta/metabolismo
20.
PLoS One ; 19(3): e0300904, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517880

RESUMO

On a global scale, lung cancer(LC) is the most commonly occurring form of cancer. Nonetheless, the process of screening and detecting it in its early stages presents significant challenges. Earlier research endeavors have recognized metabolites as potentially reliable biomarkers for LC. However, the majority of these studies have been limited in scope, featuring inconsistencies in terms of the relationships and levels of association observed.Moreover, there has been a lack of consistency in the types of biological samples utilized in previous studies. Therefore, the main objective of our research was to explore the correlation between metabolites and Non-small cell lung cancer (NSCLC).Thorough two-sample Mendelian randomization (TSMR) analysis, we investigated potential cause-and-effect relationships between 1400 metabolites and the risk of NSCLC.The analysis of TSMR revealed a significant causal impact of 61 metabolites on NSCLC.To ensure the reliability and validity of our findings, we perform FDR correction for P-values by Benjaminiand Hochberg(BH) method, Our results indicate that Oleate/vaccenate (18:1) levels and Caffeine to paraxanthine ratio may be causally associated with an increased risk of NSCLC [Oleate/vaccenate(18:1)levels: OR = 1.171,95%CI: 1.085-1.265, FDR = 0.036; Caffeine to paraxanthine ratio: OR = 1.386, 95%CI:1.191-1.612,FDR = 0.032].


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Cafeína , Análise da Randomização Mendeliana , Ácido Oleico , Reprodutibilidade dos Testes , Estudo de Associação Genômica Ampla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA